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In the proposed model I extend the Ait-Sahalia (1996) model of nonpara-
metric estimation of diffusion function by incorporating Poisson jumps. This
extension should increase the precision of estimated diffusion function. Be-
cause of limited data available on Central European countries, the more com-
plex Bandi and Nguyen (2000) approach cannot be used. The model will be
calibrated on four Central European currencies. The CEE currency should
benefit from the presence of Poison jump component because the emerging
markets exhibit significantly lower liquidity than the advanced ones. In ad-
dition, the importance (and relevance) of a new component will be evaluated
and discussed.
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1. INTRODUCTION

The econometric models which use just Brownian motion as an error
term are not able to explain certain stylized facts of financial time series,
namely fat tails or high skewness. These models, therefore, do not mimic
real data and consequently missprice derivative based on these models.

The most obvious way how to incorporate fat tails into an assets return
distribution is to include a jump component. In addition, the excess kur-
tosis can arise either from volatile volatility or from a substantial jump
component, which again motivates the use of a jump model.

One of the first models with Poisson jumps is Merton (1969). Jump
process has been studied in the literature on term structure of interest rate
and also in the foreign exchange literature, e.g. Ball and Roma (1994), Ball
and Torous (1983), Jorion (1988) or Bates (1996).



In original Merton (1969) model the log of jump size is assumed to have
a normal distribution with a constant mean value. However, the jump
size distribution could be time varying if the conditional mean of the jump
size distribution is allowed to be sensitive to trends in the market. Ball
and Roma (1993) enriched the Vasicek (1977) model by time varying jump
diffusion. For the purposes of their study, the jump size was modeled as the
function of displacement from the central parity of EMS currencies. Bates
and Craine (1999) specify the model where the volatility factor drives the
intensity of jumps. Also Bates (2000) uses a time-varying arrival rate of
jumps. All these mentioned authors assume the parametric specification of
jump component.

One of the first papers dealing with nonparametric estimations of diffu-
sion function of interest rate process is Ait-Sahalia (1996). He estimates the
diffusion function nonparametrically while drift is still parametric. Stan-
ton (1997) extends this paper and present methodology for estimation of
both drift and diffusion nonparametrically. None of these two papers as-
sume jump component. Bandi and Nguyen (2000) extend methodology
event further and provide complete asymptotic theory for nonparametric
estimates of drift, diffusion and jump intensity functions. Their paper is
based on Johannes (2000) where he justifies the nonparametric extraction
of the parameters and functions controlling the arrival of a jump from the
estimated infinitesimal conditional moments.

However, there is one important problem connected with otherwise gen-
eral methodology of Ait-Sahalia, Stanton or Johannes, namely data re-
quirement. Ait-Sahalia (1996) uses 5500 observations (around 20 years),
and Johannes (2000) or Bandi and Nguyen (2000) use more than 8000.
For the purpose of the simulations they use 10000 observations, which is
equal to 40 years of daily date. Since I want to estimate the model us-
ing exchange rate of Czech republic, I have just 2500 daily observations
which covers approximately 10 years. The scarcity of data for this country
is similar to any other transition country. This specific problem -relative
small data sample- is a reason why I want to develop methodology which
would produce estimates with lower standard error than known estimation
techniques..

More specifically, my first goal is to develop estimation technique which
would not be very data demanding and which would, at the same time,
allow for nonparametric estimation of diffusion and jump component. In
my paper I want to extend original model of Ait-Sahalia model (or simplify
Johannes one) and asses the importance of this extension on advanced
but primarily on emerging markets. It has been recognized in the finance
literature that one of the most important features for derivative pricing is
the specification of the diffusion function. Therefore, the inclusion of jump
diffusion should improve the estimate of this function, and consequently



increase the precision of derivative pricing. My methodology originates in
papers which model short-term interest rates. In order to better illustrate
my contribution and not to mix model for interest rate with model for
exchange rate evolution, I will derive my methodology for interest rate.

The second goal is to put this methodology into exchange rate context.
An important issue in this paper is to study whether seemingly higher
volatility in emerging markets is captured by the models of price process
with a jump component.

The rest of this paper is organized as follows. The Section 2 is devoted
to the literature review. The specification of my model is in Section 3 and
solution in Section 4. In Section 5 I describe the empirical results. Brief
conclusion is at the end.

2. OVERVIEW OF LITERATURE

2.1. Models with parametric drift, diffusion functions and
Poisson jumps.

In general, continuous time models in finance typically rest on one or
more stationary diffusion processes with dynamics represented by It6 stochas-
tic differential equation. The evolution of interest rate is governed by the
process:

d?"t = U (’l“t) dt +o0 (Tt) th

where functions p () and o (-) are drift and diffusion functions respec-
tively, {W4,t > 0} is a standard Brownian motion. Usually drift and diffu-
sion is parameterized, p (r,6) and o (r,6), § € © C RE.

Using parametric specification has, definitely, its advantages. We can
express process analytically and employ the maximum likelihood estimation
procedure to obtain the estimates of parameters. However, it has also
disadvantages — possible misspecification of the model. There is no reason
to prefer one functional form of drift or diffusion to another.

Example of parametric models with Poisson jumps is Das’s (1999) model,
which comprises of mean-reverting drift, diffusion and Poisson Jump pro-
cess. This model may be written

dry = k(0 — 1) dt + odW, + £(t)dJ (M)

where £ is a random jump whose size has a lognormal distribution with
constant mean and volatility, and the arrival of jumps is governed by a
Poisson process with arrival frequency parameter A.This parameter indi-
cates the the number of jumps per year. The diffusion and Poisson process
are independent of each other, and independent of £ as well. The return
evolves with a mean-reverting drift and two random terms, one is Brownian
diffusion and the other a Poisson process with random jumps &.



2.2. Model with nonparametric drift and diffusion (no jump)

The building stone of nonparametric estimation in finance is approach
described in Ait-Sahalia (1996). He uses the parametric drift (instanta-
neous mean) and the nonparametric diffusion (or instantaneous variance)
functions to model interest rate behavior. After estimating drift func-
tion parametrically and marginal density nonparametrically, the function
of diffusion is constructed. Detail description of the model and estimation
approach is in Appendix. Ait-Sahalia (1996) uses following model:

drt = U (’l“t) dt +o0 (Tt) th

where {W;,t > 0} is a standard Brownian motion. p(-) and o (-) are the
drift and the diffusion functions of the process.

Let 7 (-) be the marginal density of the spot rate, and p (-) estimated
parametric the drift. Diffusion function is then reconstructed by formula:

T

/u(u,@)ﬂ(u) du

o

2
7 (7)

This equation shows that diffusion function can be constructed from the
marginal distribution 7 (-), and the drift parameter vector 6. The identi-
fication of # will be based on drift function. Ait-Sahalia (1996) assumes
drift as a linear function of r;.

Stanton (1997) develops a procedure for estimating both functions —pu (-)
and o2 (-) — nonparametrically from data observed only at discrete time in-
tervals. He uses Taylor expansions to construct a family of approzximations
to the drift, diffusion, and market price of risk functions. Stanton’s estimate
of drift confirms the hypothesis formulated in Lo and Wang (1995) about
the misspecification of drift. He finds that the drift p(-), he estimated,
shows evidence of substantial nonlinearity as opposed to linearly restricted
as in Ait-Sahalia (1996). The estimated o (-) is similar to the estimated
(parametrically) by Chan, Karolyi, Longstaff and Sanders (1992).

In order to price assets, which depend on some underlying state variable,
we need to know not only the dynamics of that variable, but also associated
market price of risk (the excess return required by an investor to bear each
extra unit of risk). Most of previous papers assume that this value is
equal to 0, because of the local expectation hypothesis formulated in Cox,
Ingersoll and Ross (1981). Stanton (1997) nonparametrically estimates the
market price of risk as the function of level of interest rate. He finds out
that this function is neither constant nor linear.

o?(r) =

2.3. Model with nonparametric drift, diffusion and jump
intensity
Bandi and Nguyen (2000) generalize the Johannes (2000) methodology
for nonparametric estimation of drift, diffusion and jump intensity func-



tions. Since the Bandi and Nguyen paper presents mainly the asymptotic
theory, I will describe the Johannes methodology.
Consider a transformation of the process into logarithms

dlog (1) = pu(re—q) dt + o (re—1) AWy + £doJ;

The key to estimation is to identify the characteristics of the jump-
diffusion dynamics through instantaneous moment conditions. Under reg-

ularity conditions:
M lim 4B log (24

M lim £ E log(

&) |re=r| = ()
) I =r| =02 () + A () B[]
)4\rt—r —5A()(J§)2

6M  lim 2B 1og(”+é) Iry=r| = 15A(r )( g)3

The identification scheme uses the fact that the 1st, 2nd, 4th and 6th
moments identify p (r),0 (r),A(r),0z. To see this, the 4th and 6th mo-
ments completely identify the jump components. Given jump components,
the second moment identifies the diffusion coefficient, o2 (r), and the first
moment identifies the drift. For estimation of the conditional j-th mo-
ments, he uses nonparametric kernel estimators in a following form:

Iy K (R (X - X))
ZZi:lK( ﬁ_a)

Bandi and Nguyen (2000) prove that the estimation scheme outlined
above is consistent.

N lim LB log(

MI = JitA=1

3. MODEL

My model originates in Ait-Sahalia (1996) and Johannes (2000). I adopt
parametric drift and also jump intensity in order to save the nonparametric
estimation for diffusion function.

My model for interest rate evolution is following

dlog (r¢) = pu(re—1)dt + o (re—1) dWy + £dJ;

where {W;,t >0} is a scalar standard Brownian motions, p(r) is a
drift function and o (r) is a diffusion function. The jumps arrive with
intensity A (r) and the jump sizes are assumed to be normally distributed
&E~N (0,02) . It is important assumption that mean jump size is 0. For

some assets it could be problematic, since jumps usually move price in a
certain direction. However, in exchange rate context is quite acceptable,



because I assume that jumps just add volatility to the price process rather
than change drift of the exchange rate. Moreover, specifying the process in
logarithms with mean zero jumps ensures that yu (7) retains its interpreta-
tion as the local mean of the process.

4. SOLUTION
4.1. Jump intensity is constant

Let us assume A () = A = const. In the presence of jumps and constant
jump intensity, the shape of the diffusion function will be the same as with-
out jumps, but will be shifted downward. The exact formula for diffusion
function is

o%(r)=o02(r) — )\O‘%,

where is o (r) the diffusion from continuous part, O'g is diffusion from
discontinuous part and o2 (r) is the total diffusion.

The intuition behind this result is following. The jump size and jump in-
tensity are not conditioned on the actual level of interest rate, 7, and, there-
fore, they have no influence on the shape of the diffusion function. They
have rather influence on the scale of this function. Since both diffusions
have different impact on option prices, I should achieve higher precision of
option pricing.

The total diffusion can be estimated as in Ait-Sahalia (1996), where

T

o5 (r) = e /u (u,0) 7 (u) du The problem, however, arrises when we
o

want to estimate the parameters of jumps, A and O'g. Estimation of these
two parameters from the model assumed in Ait-Sahalia is complicated.
Moreover, the log-transformation of the interest rate process used in Jo-
hannes prevents me from using his methodology for estimation of A and O'g.
In this case, estimates from log-model would be different from estimates
from original model.

Therefore, my proposed methodology originates in Johannes (2000):

1. Estimate parametrically the drift 4 (). Since I assume linear mean-
reverting function of drift, ordinary least square identifies the parameters
aand B in Eflogriy; —logr | ri] = a + fry.

2. Estimate the A and U%. Based of Johannes (2000) calculation of mo-
ments, ratio of 6th and 4th moment will give me the desired estimate of the
O'g. Consequently, the estimate of the A will be A = %. Particular

g

moments will be estimated as follows: 4th Moment = L S ' log (”*A ) =

5\ (0?)2, and 6th Moment = 1 """ ! og (T”A) =15\ (0?)3



3. Diffusion function can be completely identified from the 2nd moment

2
estimated nonparametrically, e.g. 2nd Moment = lAirlr(l) %E [log (T”A> | 7

Therefore, the 0? (r) = 2nd Moment (1) — Ao3.

4. The diffusion estimator can be used to correct for heteroskedasticity
in the residuals from the regression in step 1.

4.2. Jump intensity is not constant

Now, I will assume that the jump intensity is not constant but rather
depend (in a certain way) on r. Naturally, I will assume the paramet-
ric specification. Using parametric specification will allow me to use the
smaller data sample and, at the same time, benefit from good properties of
models which have nonparametric diffusion function and jump component.

A first candidate for parametric specification of A (-) is linear function,
namely A (r) = a+br. This specification looks simple, but if we would take
to account the error band, the Johannes nonparametric estimates are not
critically far from linear function. By letting b = 0, the linear specification
collapses to the previous case of constant jump intensity. In this case o2 ()
will have a different shape than in case without jumps.

The estimation of all function of interest rate process is following

1. Estimate parametrically the drift p(-). I can assume linear mean-
reverting function of drift, ordinary least square identifies the parameters
a and S in Eflogriyq —logrs | 1] = a + Bry.

2. Estimate the A (r) and of. Based of Johannes (2000) calculation of
moments, the ratio of 6th and 4th moment will give me the desired estimate
of the O'g. Consequently, the parameters of A (r) = a + br will be identified
Bl (222 )in=1]

o2y
3. Diffusion function can be completely identified from the 2nd moment

via regression =a+ bry,

2
estimated nonparametrically, e.g. 2nd Moment = lAiIlr(l) %E [log <—Tt+A> | 7

Tt
Therefore, the o2 (r) = 2nd Moment (r) — X (r) Jg.
4. The diffusion estimator can be used to correct for heteroskedasticity
in the residuals from the regression in step 1.

4.3. Simultaneous estimation of Jump intensity and diffusion

In Appendix, I present the nonparametric estimates of drift, diffusion
and jump intensity functions from Johannes (2000). I find that the shape
o2 (r) is similar to shape of A (). Therefore, I propose to use the functional
form of diffusion function for estimating the jump intensity function, e.g.
A(r) = f(o(r)) or A(r) = o(f(r)) The function f will have a simple

—r|.



linear form, f(z) = a + bx, which will imply that X\ (r) = a + bo? (r). If
the parameter b would be insignificant, jump intensity would be A (r) =
a = const. The later transformation, A(r) = o (f(r)), however, is not
suitable for the following reason: \(r) could have a different scale than
o2 (r). Therefor I will adopt the former version of transformation, namely
Ar)=f(o%(r)).

Naturally, estimation of A (r) and o2 (r) will have to be done simultane-
ously. This kind of estimation will restrict (or modify) the shape of o2 (r),
but I will gain on avoiding misspecification of Poisson intensity function.
This method could preserve high complexity of functions and save data
requirements at the same time.

Derivation of the estimates starts with Johannes instantaneous moments
conditions:

2M (r) =02 (r) + A (r)202
AM (r) = 5X () (ag)

Let’s denote the shape o2 (r) as f (r). Provided that \ (1) = a + bo? (r)
and estimate of O'g is known,

2M (r) = f (r) + (a +bf (r)) o
AM (1) =5(a+bf () (02) /50
Rearranging the terms
oM (r) = f (r )( +U§b) + ao?
4]5\/[(;) (a+bf (r) oz = f(r) (0?1)) + a0
By subtracting of the first equation from the second one, I will get the

estimate of f (r) =2M (r) — %(;)-
¢

To write it precisely,

2 ° +4 4
IIII(I) E [log (T”A) 1 g(5a£ ) | e = r] = f(r)

From the equation for second instantaneous moments moment, I will get
estimates of parameters a and b and hence the A (7).

5. EMPIRICAL ANALYSIS

5.1. Comparative studies

In the first part of empirical section, I will calibrate my new model with
Ait-Sahalia data (US interest rate). I will compare the diffusion function



from my model with those presented in Ait-Sahalia. The differences in
shape of these two functions will enable me to assess the effect of Pois-
son jumps. Direct comparison of my results with results presented in
paper, however, will not be possible, since in my methodology I assume
log-transformation of Ait-Sahalia process. Anyway, I will evaluate the im-
portance of generalization. On the other hand, calibration of model on
Johannes (2000) data will assess the loss coming from parametric restric-
tion imposed on drift and jump intensity.

5.2. Exchange rate

The prime interest of my paper is modelling of the exchange rates of
the Central European countries. I will calibrate the model with the Czech
koruna exchange rates. The effect of Poisson process should be more pro-
nounced than in the advanced markets.

Since I will work in exchange rate context, I need to model drift as
a function of instantaneous expected rate of appreciation of the foreign
currency which is equal to the interest rate differential.

My model for exchange rate has following specification:

dlog S = pu.(b) dt + o (b) AW, + €d.T
prob(dJ =1)=X(b)dt and £ ~ N (O,Ug)

where {W;,t > 0} is a standard Brownian motion, S is a nominal price
of foreign currency in terms of domestic one; b = rdomestic _ pforeign g
interest rate differential; p (b) is parametric mean reverting drift function;
and o (b) is nonparametric diffusion function.
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